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VIBRATIONS PROBLEMS,

P. Santini — R. Barboni

ABSTRACT

Flutter prevention can a significant factor in aircraft design with implications on structural design and
thus on weight and performance.

It is well known, however, that in experiments the plate ampiitude Is limited by the non-linear behaviour
of the structure,

A most importani non-linear factor which limites the amplitudes in the case of flutter of plates is the
non-linearity of a geometric kind associated mainly with the occurrence of tensile stresses in the middle sur-
face.

These stresses strongly depend on the in-plane boundary conditions that can be of whatever kind.

This makes it difficuit to select functions which satisfy the necessary conditions and then to apply, as
is usual done, Galerkin's method.

The purpose of this paper is to present a new general mathematical approach which has been developed
and adapted specifically to three-dimensional panel flutter taking into account coupiing of out-of-plane bending
and in-plane stretching.

The method here presented can be considered as a generalization of the Galerkin’s method and, with
the recent advances in computer technology, computations for boundary-value probiems either linear or non-

linear are of practical interest.

1. — Introduction

The response of three — dimensional plates in a high supersonic flow to a disturbance is studied.

Linear theory [1] [2] indicates there is a criticai dynamic pressure above whichthe plate motion grows
exponentially with time.

A large deflections, however, non-linear effects come into play and generally restain the motion to a
bounded limit cycle. in Refs [2]-[8], the non-linear panel fiutter has been mnvestigated.
Also in the present paper the non linear membrane forces induced by the piate motion are included in
the analysis and the linear aerodynamic theory is employed.

The present article will concentrate on effects of the in-plane boundary conditions on the amplitude
and frequency of limit cycle and on the stressdistribution,
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2. — A General Approach to a Modified Galerkin’s Mathod

Let us consider a uniform road. fixed at its ends (0,1) under conditions of axial vibration. %
Y

40 AN x
it is well known that its modes are expressed by
(1) U, = sin k7 x
whereas natural frequencies, made conveniently non-dimensionai are w o=km.

Now, if end-conditions are modified, and an elastic constraint of rigidity ﬁi (i = 1 for the left end;
i = 2 for the right end) are added to the structure, we have the new end — conditions:

f =0 du 8 =0
or x T 1
{2)
f =1 du+B =0
or X : u
d x 2

which are not satisfied by (1) which would imply zero end dispiacement, However. by denoting by Ug , Uy
the actual end values of u{x) we may write:

(3) u=uo(1—x)+ uy x'-é-%'(ak sin k7 x

since it is well known that the functions sin k 7 x constitute a complete set to represent functions vanishing
at the ends, such as is the case of u(x) — Uy (1= x) — ug x. However, by introducing (3) into the equa-
tion of dynamic equilibrium of the rod. we obtain a relationship ot the kind:

=0

(4) Fixgu, , u,, a,)

Similariy, the end—conditions {2} vyield
(5) fiug,uy ,3)=0

Since (4) is 1o be valid everywhere in (0.1), the coefficients of expansions of F in terms of sin k7 x
must be zero.

Thus, if N waves are taken in the series (3) to approximate u{x), the above said conditions, together
with (5), constitute a set of N+ 2 equations from which the constants Uy + Uy s 8 (and the frequencies as
well} can be determined, As N approaches infinity, the solution will converge to the exact one. (Appendix )

In a similar way, it is known that the sin k 7 x are the modes of the uniform simply supported beam;

=

for a non simply supported beam, we may obiain the modes as X ; a8, sin k7mx +r-2—-o w, X',

Nor should be concluded that onily the sin k mx‘s are suitable functions: any set of proper modes
will work provided a sufficient number of additional functions be introduced, capable of re-establishing the
missing quantities in the pertinent boundary conditions. Thus, in the example previously stated, the form
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Z, 8 sin kmx + d x2 + " x3 wouid not be adequate, since it always vanishes as x = 0, although
it depends on two additional functions, as (3).
At this points we may re-state Galerkin's well known method, by expressing the unknown function

u {x) under the form
- 2
(6) Zi 3 ¥y (x) + Zr W X, {x}
where the \pk (x) are the modes corresponding to arbitrary homogeneous end-conditions and the functions

X, (x) must be such that the term corresponding to them do not vanish identicaily when boundary con-
ditons corresponding 1o the ¢} are applied Inorder words, one must have:

3
d X, o x (d X2 _ 4 X
dx 1 1 =0 dx 1 2 =o
d X, d X4
o + a ) —_— 4 X
(d M 2 Xi (dx 2 2) n
x=1 x= J

Introduction of {6) into the equation of dynamic equilibrium and the expansion of the result in terms
of a convenient complete set of functions (preferably, but not necessarily the 1y (x)) provides, together with
the boundary conditions, the necessary and suftficient number of equations for the solution of the probiem.

3. — The two—dimensional case

Let us now consider a rectanguiar panel, where at every point, we have a normal displacement w(x ,y)
and membrane displacements u{x.y), vi(x, y).
Normal displacements are expressed as a series of flexural modes ot the panel:

7) w= L % w, W (x,v)

As for as membrane displacements are concerned, let us consider ail point lying on a strip y = const.

We may repeat for such points what has been said under Art. 2 and write consequently:

L x X
- ulx,y)=u, (v)@—m)+u1 ly) =—
h# a a
{3)

X

+§ a, Sin K ==
1k K a

A similar formuia will hoid for v{x,y).

But since we can anaiogously formuiate u(y), u;(y), a, ly) we are finally led to0 the expression:
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An anaiogous expression is valid for v(x, y). By wtroducing u , v into the membrane equation

of equilibrium:

82u 1—-v 232y 1+v 3%v
+ + =
d x2 2 9 y? 2 9xdy
(10) -
aw<82w 1-v 2w dw 1+y 4w
dx \d x? 2 0 y? y 2 dxdy

expanding into a series of sin _‘5372‘ we have a relationship containing the unknown constants appearing in the pre
vious expression pius the coordinates (x . y)
We now express the conditions that ail the harmonics of the previous relationship must vanish, and

we obtain the final resuit:
Cyy A+Cyp B +Dgy Uy + Dyy Uy +Dgp Upp + Dyp Uz *

t By Vot By Vyy By Vo TEgp Vi
(1)
+ G

tG t Go Viot Gy vy T

00 Yoo 01 Vo1 10

= %:1 zn: wm Wn an
The rather lengthy expressions of the coefficients appearing in (11) are given n Appendix Il. Here

the vectors A denote the vector obtained by the a_ _ (the coefficients of v . ). etc.
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We now turn our attention to boundary conditions.
We shall take them in the very general form.

7\1 N, + p11u+,u22v=0

(12)
M Nyt oy utuyv=0

on the side x = 0 ; analogous expressions are valid for the other three sides. If we calculate the N, Uy
from the expressions of u , v again we well have two relationship depending on the unknown constant
and upon x .

We must formally state that they are valid for x = 0 and x = 1, and the coefficients of their ex-

pansion in term of sin is equal to zero. By repeating the same operations on the other three sides,

a
we have with {11) a sufficient set to eliminate the constants as bilinear functions of the Wr S.

In order to prove that the conditions so obtained are necessary and sufficients we must of course refer to

. kax sy
the realistic case when a finite numbers of modes sin =~ Sin —— is taken ; let M be the number of
a b

modes in x , N the number of modes in vy . Then Eqgs (11) (and the equivalents in y) are 2MN ; the equations
derived by (12) are 2M +4 and analogously on the other three sides, we wiil have 2M +4, 2N +4, 2N +4
conditions respectively.

So, all together, we will have 2MN +-4M +4N +16 conditions. But it can be proven that independent
corner conditions are halved (suffice here to think that for every corner we have only one u and one v), so
that we have a total of 2MN +4M + 4N + 8 conditions which is exactly the double of the constant appearing
in {9) (an equal number refers to v).

When all the quantities are eliminated, as bi-linear functions of the coefficients of w, introduction into
the equations of dynamic equilibrium of the vibrating aeroelastic panel and subsequent development into a
series of W, {x,y) will yield the final well known non linear equations [2].

It is pointed out that the difference between the procedure here described and other approach will results
in the coefficient of third order nonlinearities.

4. — Use of Airy's function

For some specific purpose, use of Airy’'s function may be more suitable. In this case, we must write the
expression to be used will be, in adimentional form

4 - . 3 = P
(13) V=3 3 ci.,é"“’n’ +3% 2, D, £ sinnay +ZjIm Emjn’smmné
2 o ! o' 1 ° 1
+ 21m 21,1 Yo, Sin mm £ sin nmn
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10 be introduced into the equation of in piane equilibrium [see giossary for simbols]

i aZW 82 azw
(14) at + 2a% b2 + b, — =~/2b12( ——:'v"“?
1 | B aEZanz 1 an4 3t dn ot an‘

At this point, by the same technique aiready described, we way obtain the expressions of u, v
and introduce them into the boundary conditions, and state equivalence to zero the resulting sine-harmo-
nics. Same applies to Eq (14) and again we can express ail the quantities of interest as bilinear functions
of the coefficients of w. Subsequent deveiopments remain unchanged.

5. — The free plate

For the free piate case the boundary conditions simply state that  and its normal derivative vanish

aiong the boundary. So we may take for y the expression

{15)

<

I
e
5 DM

+ Ven X ®) %, @)

where now the xr' s are the modes of the ciamped-edges beam, which has formally the same boundary
conditions than the case here considered, and need not any bune be considered.

We limit ourseives to present some typical results for plate of Fig. 1 free in-plane and simply sup-
ported out of the piane x—vy.

In Fig. 2 is shown the shape of the limit cycie panel deflection for ¢ = 10 and p = 1. The de-
flection shape is very similar (as function of ¢ . 1) to that predicted by linear theory. In Fig. 3 limit cycle
amplitude is drown vs. dynamic parameter pressure ¢ for panel of different iengnt to w.dth rat.os
(p =1;15;20.

For comparison resuits of Bibl. {4] [6] are given. {n making this comparison we must take into account
the different in-piane boundary conditions. Here the free-edges conditions have been imposed; the zero in
piane stretching, in average sense in [4] and localiy in [6] are assumed.

In Fig. 4 the limit cycie frequency vs dynamic parameter is given for comparisor with the resuits of
[4] [6].

Adimentional stresses distribution NE' N,,2 . Nin along panel for p = 1 and o = 10 are presented
in Figs. 5, 6, 7.

6. — The fixed edges plate

For a fixed edges piate, in piane x vy , it is preferable to use the u, v approach:

(16) u= o, ?n Up, SNMmEsinnmy
1
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(17) v=$r f;is Vo SinrmE sinsmn

Also in this case we limit ourselves to present some typical resuits for plate simply supported in
z — direction.

In Fig. 8 the shape of the limit cycle panel deflection for ¢ = 10 and p = 1 is given.

In Figs. 9, 10 respectively the limit cycie amplitude and frequency vs. dynamic parameter are
given,
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APPENDIX |

Consider a uniform rod with the following end—conditions

for x=0 u=20

(1.1) for x=1 du _ 0
dx

by introduction of (3) becomes:
{1.2) b a, [w? —(k7)?]sin k 7 x + w? [u(1=x) + uy x] =0

k=1
The end—conditions are now
{1.3) u, =0
(1.4) up —u, + 2 g 05k =0

k

By expressing the condition that each harmonics of the left side of (1.2) mustvanish:

(1.5) [w?2 - (k7)?]a +.31’2 fu —(1kul=0
. ’ k k T o 1
and so, by sostitution into (. 3) we have:
u, =0
1 k2
(1.6) ) w2 . =1 w .
u[1+2 2 ] —u, 1 +2 2 1=
1 (02 -k ,”)2 1 wz —(k ,”)2
By noting that
w2
(L.7) 2% ———— =ctnw— 1
1 w2 — (k 7()2
L Enke?
(1.8) 2 2y = wesc w — 1

1 w2 —(k 7,)2

it is to obtain the well know result for the eigen-values

(1.9) cos w = 0

for the rod with the end—conditions (I.1).
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APPENDIX Il

By introducing the expressions (9) into (10}, multiplying by sin JTX in ’_;l and integrating
a

to the panel surface one gets the following resuit

H 1-v . s i
(1.1) a; [liag)? + == (b1 +(i a) [ Uy, +; U]

1—-v . + y
+ = (jb)? [¢” Voi + 6 Vq5l +ay by 14v [c’j c +
2 2 72

+ ?s snkis (V1s - Vos) +21r ”Tkir (Ur1 - Uro) +

2 —
HEZrsrl b 86 ]=am3T3 %%quwrs Lo, rs, il

where we hqve:

(11.2) cos im , 1—cos im . 1
. c, = - ;= ;G =
! in ! in ! in
4r - . —_ N FR—
i (r.z_.i.l)" fi#*r kir—O ifi=r

1—v ' {j) T+ G
e [a2 2 2 3 i 2
1-3) quri;ii [, P F 2 by a ]'arp Y sp 2 by * ™ esq
/ otherwise =0
= i =ctp =14
p \
. p—r
i =lp—r} = 1/4 =

j 1 1
jt+s+ odd = — - - .

ij+tst+tqgeen =0
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jtn j=n
J + J

1
j+ s+ odd = - -
. 4 7r [(i+n)—q2 (j—n)*—q?

j+s+gq even

i
o

An analogous equation is yield by y—wise equitibrium.

Now, in order to reduce the latter to the vector equation (11), we firstly introduce one single subscript
for the pair (i,j). If M denotes the number of x—wise waves we may substitute, to the pair {i,i} the
index k = {j—1) M + i. Conversely if the index k is given we have i = mod (k,M), j= 1+{k—1)/M.

From this, the quantities appearing in (i1.1) can been written in matrix form to obtain (11).
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GLOSSARY

a = plate length
2 = L/a
a, = modal amplitudé
b = plate width
b, = L/p
h = plate thickness
p = pressure
q = p U2/ dynamic pressure
u, v = in—plane displacements (adimentional with respect h2/[_)
U .V = coefficients Eq. (9).
w = plate deflection (adimensional with respect to h)
X,Y,2 = plate coordinates
A.B = vector Eq (11)
D = plate stiffness
Cii . D-'ij = coefficients
E = modulus of elasticity
Eij . G!] = coefficients
L = length unit
M = Mach number
N, . Ny . ny = stress

N
N£ = N

Ehb?

N
N = .._11

K Eha¥

N
NEn = —

Eh a; b,
Qnn = coefficient

u L4 12
T =
ED 1r4)
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i

air velocity
coefficients
amplitude deflection
M2 -1

end rigidity

hiL

/b

g2 -1 (75 L
=)&)

X/a

coefficients Egs. (12)

mass for unit length

coefficients Egs. (12)

Poisson’s ratio

a/p
air density
2q T2

w— o= dynamic pressure
BL u

eigenvector

g
12

Airy’s function

frequency
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DISPLACEMENT DISTRBUTION FOR p=0,6=10,0:01 _
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FIG. 8 STRESS DISTRIBUTION FOR @=1, 0=10, ®=01_
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